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The proper orthogonal decomposition technique is applied in the frequency domain to obtain
a reduced-order model of the #ow in a turbomachinery cascade. The #ow is described by an
inviscid}viscous interaction model where the inviscid part is described by the full potential
equation and the viscous part is described by an integral boundary layer model. The fully
nonlinear steady #ow is computed and the unsteady #ow is linearized about the steady solution.
A frequency-domain model is constructed and validated, showing to provide similar results
when compared with previous computational and experimental data presented in the literature.
The full model is used to obtain a reduced-order model in the frequency domain. A cascade of
airfoils forming a slightly modi"ed Tenth Standard Con"guration is investigated to show that
the reduced-order model with only 25 degrees of freedom accurately predicts the unsteady
response of the full system with approximately 10 000 degrees of freedom.
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1. INTRODUCTION

MODELING, PREDICTING, AND CONTROLLING aerodynamic #ows is a complex spatio-
temporal dynamical problem with important practical applications that holds the interest
of many researchers. The recent rapid increase in the performance of computers allows one
to construct and determine time histories and frequency-domain responses of extremely
large aerodynamics systems, with up to 104}105 degrees of freedom. However, the computa-
tion time required to solve such systems is large and becomes prohibitive when parametric
analyses are required. Moreover, most control schemes are designed for relatively small
systems, with 1}100 degrees of freedom. Therefore, the applicability of these detailed and
precise models is signi"cantly limited. The need for models with a much smaller number of
degrees of freedom, also called reduced-order models (ROM), is apparent.

Generally a ROM is a simpli"ed model that has a much smaller number of degrees of
freedom than the original model, but nevertheless captures the dynamics of the original
model with acceptable accuracy. The tradeo! between accuracy and complexity is deter-
mined by each particular application. In most preliminary design analyses, the required
level of accuracy is relatively low and, therefore, the use of a ROM may be acceptable. Also,
many control strategies have a relatively large robustness to model uncertainties and thus may
successfully control the full system although they are designed and tested using the ROM.
0889}9746/01/020255#19 $35.00/0 ( 2001 Academic Press
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The early attempts to construct ROMs for #uid dynamic analysis and design used
physical insights to reduce the complexity of the model (Whitehead 1959; Greitzer 1976;
Moore & Greitzer 1986). Although useful, these techniques are usually applicable to
a rather limited range of parameter variations, such as small values of the reduced
frequency, and small static and dynamic loads. To overcome this limitation, more recent
analyses have used more systematically derived ROMs. Among these techniques are PadeH
approximants of the unsteady aerodynamic transfer functions (Ueda & Dowell 1984;
Peterson & Crawley 1988; Dowell 1980), eigenmode summation techniques in either time or
frequency domains (Dowell 1995; Hall 1994), and proper orthogonal decomposition
(Romanowski 1996). Most of these previous investigations have been concerned with
linearized systems, although some of the techniques developed, e.g. POD, have been applied
to model both linear and nonlinear phenomena (Kirby & Sirovich 1990; Noor 1994; Stone
& Cutler 1996). Fully nonlinear normal modes and reduced-order models have also been
investigated for very low-dimensional systems (Shaw & Pierre 1993, 1994).

Reduced-order models for a wide variety of systems have been constructed, e.g. Burger's
model of turbulence (Canuto et al. 1988; Chambers et al. 1988), the full potential equation
(Hall et al. 1995), Euler equations, Navier}Stokes equations (Deane et al. 1988),
Raleigh}BeH nard convection (Holmes et al. 1996), turbulence and boundary-layer models
(Liu et al. 1994; Sirovich 1987a}c). Reduced-order models have been developed in the time
domain for a variety of systems, e.g. #ows over isolated airfoils. The #ow was described by
the Navier}Stokes equations which were used in the time domain to obtain the eigenmodes
of the dynamics of the #ow (Mahajan et al. 1991). Recently, however, the frequency domain
was more extensively analyzed for both unsteady analyses and ROM construction (Kim
et al. 1997; Bu!um et al. 1998; Kim 1998). The inviscid full potential equation and the
eigenmode summation technique in the frequency domain were used to construct ROMs
(Hall et al. 1995) for #ows in a turbomachinery cascade. A coupled inviscid}viscous model
using the full potential equation and a "nite-di!erence boundary-layer model was also used
together with an eigenmode summation technique to construct ROMs (Florea et al. 1998) of
the #ow in a compressor cascade.

Signi"cant progress has been made in the recent years in computing unsteady #ows in
turbomachinery and around isolated airfoils (Hall & Crawley 1989; Hall & Clark, 1993;
Cizmas 1995; Verdon et al. 1995; Florea 1996). Various codes have been written using the
Navier}Stokes equations. Although accurate, these codes have proven to be computation-
ally very expensive. To reduce the complexity of the problem, many researchers have used
simplifying assumptions in their models. One of these assumptions is the small disturbance
assumption based on the observation that in many cases the unsteadiness in the #ow has
a smaller magnitude than the steady component. As a consequence, linearized Euler
(Ni & Sisto 1976; Hall & Crawley 1989) and linearized Navier}Stokes (Clark 1998) codes
have been developed.

The required computation time has been decreased by orders of magnitude compared to
the time-marching of the fully nonlinear Navier}Stokes equations. However, the computa-
tion time still remains signi"cant. Although historically it preceded the linearized Euler and
Navier}Stokes codes, the boundary-layer assumption introduced by Prandtl is another
e!ective way to further reduce the computational e!ort. In the boundary-layer assumption,
one uses the fact that in many cases of practical interest, the Reynolds number is very large
and the e!ect of the viscosity is limited to a thin region around the solid boundaries and the
wake. Therefore, one may decompose the #ow into an inviscid outer #ow and a viscous
inner #ow. To complete the model, one de"nes the coupling mechanism that governs the
inviscid}viscous interaction. When this interaction is weak, the viscous and inviscid regions
may be solved separately in an alternative iterative fashion. The viscous #ow equations or
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boundary-layer equations are solved with a prescribed pressure on the solid boundaries,
and the inviscid #ow is solved with a given displacement thickness. This technique is known
as the direct-coupling method.

Although the direct-coupling method works well in the weakly coupled regions, it
converges very slowly or fails to converge when the interaction is strong. Typical examples
of such interaction are encountered at leading and trailing edges, near shock waves, and
near the separation point where the Goldstein singularity is present (Goldstein 1948). To
account for such problems, many coupling techniques have been developed. These tech-
niques may be classi"ed as inverse, semi-inverse, quasi-simultaneous and simultaneous. The
inverse technique (Catherall & Mangler 1966) solves the boundary-layer equations using
a given displacement thickness rather than a given pressure while the potential equations
are solved using a given pressure at the solid boundaries. The semi-inverse technique
(LeBalleur 1978) solves both the boundary layer and the potential #ow using a prescribed
displacement thickness. At each iteration, a new value is prescribed for the displacement
thickness based on a relaxation formula that uses viscous and inviscid predictions for the
pressure. The quasi-simultaneous technique (Veldman 1979, 1981) uses a prescribed pres-
sure for both viscous and inviscid regions together with a coupling law called the interaction
law. The interaction law allows the scheme to solve simultaneously the viscous and inviscid
regions. However, after each solution is obtained, new iterations are required until the
prescribed pressure is identical to the viscous and inviscid pressure values as obtained from
the outer (inviscid) and inner (viscous) solutions. The fully simultaneous technique solves
both the viscous and inviscid regions simultaneously using the tangential velocity at the
displacement body and the transpiration velocity to account for the displacement thickness.
As opposed to the quasi-simultaneous technique, no iterations are required in the fully
simultaneous method once the simultaneous set of equations is solved.

To further lower the complexity of the model without signi"cantly a!ecting its accuracy,
reduced-order models may be constructed using various techniques. In this paper, we
propose the use of the proper orthogonal decomposition (POD), also known as
Karhunen}Loève method. The POD is a technique that allows one to obtain good
approximations of the spatial modes of vibration and the dynamics of a system using the
response of the system to various excitations. Introduced in the context of meteorology and
wind engineering to analyze experimental data (Cenedese et al. 1997; Jeong & Bienkiewicz
1997; Kikuchi et al. 1997; Sahan et al. 1997; Tamura et al. 1997), the POD has been used for
a wide variety of problems, such as wind loads calculations (Ho et al. 1995; Bienkiewicz
1996; Uematsu et al. 1997). The wide applicability of the method is due to the fact that it is
only based on the assumption of a low-dimensionality of the dynamics of large systems
(Chambers et al. 1988; Georgiou & Schwartz 1996). For a large category of problems, this
assumption holds because in many cases the energy of the dynamics of the system being
analyzed is, to a very large extent, contained in the dynamics of a few modes of vibration.

In the context of turbulent #ows, the POD was adopted as a technique that allows for the
identi"cation of coherent structures that naturally form in the #ow (Sirovich 1987a}c;
Holmes et al. 1996). The coherent structures that contain most of the energy of the dynamics
are usually the most important.

Very well-suited for linear systems, the POD is also applicable to nonlinear systems.
However, for some nonlinear systems, the applicability of the POD method is quite limited,
because modes or coherent structures strongly exchange energy and therefore the required
number of modes that may capture most of the energy of the dynamics increases very
rapidly. This phenomenon occurs because the dynamics of the system is not low-dimen-
sional (Strain & Greenside 1998). Typical cases of systems where the simple POD technique
is not successful are the systems that exhibit spatio-temporal chaos. However, in such
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situations, the POD may also be used in a local fashion. When spatio-temporal chaos is
present, usually there are unstable limit cycles embedded into the strange attractor on which
the dynamics collapses. The dynamics along these limit cycles is low-dimensional, and
therefore local reduced-order models may be constructed. Using the low-dimensional
approximate dynamics along the limit cycles one may design controllers that will stabilize
these limit cycles (Epureanu & Dowell 1997, 1998; Epureanu et al. 1998).

In this paper, reduced-order models in the frequency domain are constructed to model
the unsteady #ow in a turbomachinery cascade. The fully nonlinear steady #ow is computed
"rst. The unsteady #ow equations are then linearized about the nonlinear steady response.
A frequency-domain linearized model is constructed, and the proper orthogonal decompo-
sition in the frequency domain is applied to obtain several reduced-order models. The #ow
is modeled using an inviscid}viscous interaction technique. The inviscid part is described by
the full potential equation using a variational formulation (Bateman 1930; Hall 1993). The
viscous part is described by an integral boundary-layer model (Cizmas 1995; Cizmas & Hall
1995; Drela 1986, 1996; Nishida & Drela 1995) based on a set of correlation functions
derived from analytical, numerical and experimental data. This model is presented in the
following section. In Section 3, numerical results obtained with this model are compared to
previous calculations and experimental data. The proper orthogonal decomposition is
presented in Section 4, and is used to construct reduced-order models. Finally, in Section 5,
we show representative results obtained using the reduced-order models.

2. MODELING

The model presented in this paper uses the small disturbance assumption together with the
thin boundary-layer approximation. Also, a simultaneous scheme that uses a variational
formulation of the inviscid #ow and integral equations for the viscous region is developed.

2.1. INVISCID FLOW

For an irrotational #ow, the velocity vector may be represented as the gradient of a scalar
potential function. For the case of inviscid and non-heat-conducting #ow, the general
Navier}Stokes equations may be reduced to one single equation known as the full potential
equation, which may be expressed as
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denoting the stagnation speed of sound.
To apply a standard "nite-element technique, it is advantageous to recast equation (1) in

integral form. The conservation of mass is embedded in a variational principle (Bateman
1930; Hall 1993) which states that for an unsteady, inviscid, irrotational #ow that is
temporally periodic with period ¹, the velocity potential that solves equation (1) in
a simply-connected domain D is the potential that satis"es the boundary conditions and



Figure 1. The solution domain and boundary conditions used to calculate the inviscid #ow.
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extremizes the functional P given by
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where Q is the prescribed mass #ux on the boundary and m is the distance along the
boundary. As applied to #ows in turbomachinery cascades, the simply-connected computa-
tional domain is obtained by making a cut along a line located close to the wake.

The steady #ow is "rst solved. Then the unsteady #ow is computed based on the small
disturbance assumption. The potential is thus decomposed into a steady value U and an
unsteady small magnitude potential u periodically varying in time, such that

/(x, y, z, t)"U(x, y, z)#R [u(x, y, z)e+ut] (4)

with u;U, j"J!1, and R representing the real part.
Figure 1 shows the domain where the #ow is solved and the regions where di!erent

boundary conditions apply. On the airfoil boundary, we require that the #ux Q be equal to
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where Q is a #ux which arises from the motion of the airfoil and the thickening of the viscous
boundary layer, and n is the local normal direction to the airfoil surface. The periodicity on
the upstream region reads
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where p is the interblade phase angle. The wake boundary condition states that the jump in
pressure across the wake is zero, i.e.,
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Since the computational domain is not aligned with the wake, an additional unknown r is
used to represent the displacement of the wake with respect to the boundary of the
computational domain. To model a streamline along the wake, an additional injection #ux
is applied on the wake boundaries, i.e.,
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where u is the tangential velocity along the wake. For the steady problem, the upstream and
downstream boundary conditions are Dirichlet and Newman, respectively. For the un-
steady problem, the boundary conditions are exact nonre#ecting boundary conditions (Hall
et al. 1993) for the linearized unsteady problem.

2.2. VISCOUS BOUNDARY LAYER FLOW

Starting from the Navier}Stokes equations, one may obtain the boundary-layer equations
by performing a scale analysis under the assumption of a very large Reynolds number. One
"nds that the di!usion process parallel to a body surface and wake may be neglected, and
that the momentum equation normal to the surface may be replaced by the condition of
zero normal pressure gradient throughout the boundary layer. In this analysis, the local
airfoil and wake curvature e!ects are neglected along with the local curvature deformation
of the airfoil. Only the linearized local translation and rotation of the airfoil is analyzed.

The two unsteady compressible equations that describe the #ow in the thin boundary
layer are
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where m and g are the tangential and normal directions to the surface of the body (Figure 2),
and u and v are the tangential and normal components of the velocity, respectively.
Equation (9) represents the conservation of mass, whereas equation (10) represents the
momentum equation.

Formally integrating the conservation of mass and momentum equations, one obtains
the von KaH rmaH n integral momentum equation
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and the energy integral equation
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where C
f

is the wall shear stress coe$cient, Q
BL

is the wall transpiration due to the
boundary-layer displacement thickness, and the subscript e indicates quantities measured at
the boundary between the inviscid and viscous regions.

The formal integration leads to a number of unknown quantities such as the density
thickness do, the coe$cient of dissipation C

D
, the kinematic density displacement d**, etc.

Based on both analytical solutions of simple #ows and experimental data, researchers have
developed correlation functions that describe the relationship between h and d* and all the
unknown quantities from equations (11) and (12) (LeBalleur 1978; Whit"eld 1978; Veldman
1979; Whit"eld et al. 1981; Drela 1986; Nishida & Drela 1995). The correlations used here
include semi-empirical and empirical relationships between various integral boundary-layer
characteristics, i.e.,
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where q
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is the tangential wall shear stress.
Laminar-turbulent transition is of considerable practical interest because it controls

important aerodynamic parameters such as drag and heat transfer. The Orr}Somerfeld
equation, which governs the growth and decay of in"nitesimal waves in the shear layer, was
used here in combination with the en method to determine the location of the transition. The
en method predicts the position of the transition to be the position where the overall
maximum ampli"cation of Tollmien}Schlichting disturbances is en and n+9. We used the
approximate spatial ampli"cation curves derived by Drela (1986) based on the Orr}
Somerfeld equation applied to a Falkner}Skan pro"le family.

This simple transition formulation was implemented using the similarity of the correla-
tions de"ned by the laminar and turbulent coe$cients of friction C

f
and kinetic energy

shape factors H* at moderate Reynolds numbers typically found at transition. It has been
found that the precise manner in which the transition occurs has little in#uence on the
overall development of the boundary layer (Drela 1986). Consequently, we modeled the
transition over only one discretization cell. We also used approximate value for C

f
and

H* in the form of weighted averages of the laminar and turbulent values. For example, the
transitional energy shape factor H* is given by (Drela 1986)
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where c
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describes the position of the transition inside a discretization cell
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i is the index of the transition cell, n
#3*5*#!-

is a constant most often set to 9, and dn/dm is
empirically determined as a function of the shape factor H and dn/dReh.

We found that for the steady calculations, there is only a local small modi"cation of the
boundary layer when the linear interpolation is substituted with a simple unweighted
average. However, an unweighted average induces discontinuities in the unsteady calcu-
lations due to the linearization. Therefore, we used equation (13).

The only parameter of the two boundary-layer equations in equations (11) and (12) that
involves Reynolds stresses is the velocity-weighted integral in C

D
. Due to the experimental

evidence for upstream history e!ects on the Reynolds stresses, one introduces a lag equation
that will correlate the dissipation factor to the shear stress coe$cient given by
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where u@v@
.!9

is the maximum Reynolds stress (Drela 1986). The lag equation for the
Reynolds shear stress scale was developed by Drela and Green (Green 1976; Green et al.
1977), starting from Bradshaw's (Cebeci & Bradshaw 1976) simpli"ed model of the



Figure 2. The solution domain used to calculate the viscous #ow. A special local analytical solution is
used at the stagnation point. The system of coordinates along the airfoil surface is indicated by m and

g. A typical displacement thickness is sketched along the airfoil and wake.
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turbulence kinetic energy transport equation, given by
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where ;
.!9

is the equilibrium slip velocity at the location of maximum shear stress, Cq%2 is
the equilibrium shear stress coe$cient, and K

c
"5.6 is an empirical constant (Drela 1996).

We used equation (16) together with correlations for the equilibrium, self-preserving #ow
shear stress and edge velocity gradient.

The solution domain used to compute the viscous #ow is shown in Figure 2, where the
thickness of the domain is considered small in comparison to the airfoil-to-airfoil gap. The
steady integral boundary-layer equations are parabolic in space so that boundary condi-
tions have to be applied only at the stagnation point. Close to the stagnation point, the #ow
is similar to a #ow over a wall. There is an analytical similarity solution for this #ow that
relates the displacement thickness to the inviscid tangential velocity (Cebeci & Bradshaw
1977). This similarity solution was used for the boundary condition at the stagnation
point.

2.3. VISCOUS}INVISCID COUPLING

The coupling between the inviscid and viscous regions is of major importance, especially at
the trailing edge where the Kutta condition applies. The tangential inviscid velocity has
a strong variation in this region. The strong variation has not only a local e!ect, but also
a global e!ect on the characteristics of the #ow. The inviscid}viscous coupling was
implemented using an injection velocity (wall transpiration). This velocity is equal and of
opposite sign to the entrainment velocity, and may be obtained starting from the continuity
equation in defect form, i.e.,
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where the subscript inv indicates inviscid variables. Under the assumption of a "rst-order
match at the boundary layer, one concludes that o

e
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. Also, the

component of the velocity normal to the surface is expanded in a Taylor series, retaining
the "rst two terms in the series. Finally, imposing the matching condition at the body
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surface, one obtains
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On the airfoil surface, the transpiration #ux Q
BL

is added to the #ux Q in the surface integral
in the variational principle equation (3). In the wake, the transpiration #ux is added to the
injection due to the motion of the wake.

In the next section, results obtained using the model described above are presented. The
results are shown to be in good agreement with other computational and experimental
results presented in the literature.

3. CODE VALIDATION

A slightly modi"ed Tenth Standard Con"guration was used to validate the steady and
unsteady calculations. For this con"guration, one cascade of NACA-5506 airfoils of chord
c is considered. The solidity of the cascade of blades G/c is 1)0, where G is the gap between
the airfoils. The stagger angle c is 453. The far-"eld upstream Mach number M is 0)5, the
in#ow angle H is 553, and the Reynolds number based on chord and upstream velocity Re is
105.

Figure 3 shows the computed steady pressure obtained using the inviscid}viscous
interaction code, where the pressure coe$cient is de"ned by C

P
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2
ov2

=
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is the total velocity upstream in the far "eld. These results are in good agreement
compared to the results obtained with a Navier}Stokes solver (Clark 1998). The invis-
cid}viscous calculation match very closely the Navier}Stokes results on the suction side,
while on the pressure side the two results generally agree, except for the region close to the
transition. In contrast, the coe$cient of pressure obtained using an inviscid full potential
solver is quite di!erent from the viscous calculation. The change in C

P
due to the presence of

viscosity is well captured by the inviscid}viscous code.
Figure 3. The coe$cient of pressure obtained when the upstream far-"eld Mach number M is 0)5 and
the Reynolds number is 105: *, Navier}Stokes; C*C , inviscid}viscous; - - -, inviscid.



Figure 4. The coe$cient of pressure obtained when an upstream far-"eld Mach number M is 0)5 and
the Reynolds number is 0)5]106: *, "ne grid; C , coarse grid.
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Next, we investigate the sensitivity of the steady solution with respect to grid re"nement.
We compute the #ow for a Reynolds number based on chord Re of 0)5]106 using a "ne and
a coarse computational grid. The "ne grid has 300]50 nodes while the coarse grid has
150]30 nodes. In Figure 4, a very good agreement between the results obtained with a "ne
and a coarse grid is observed.

Next, we investigate the sensitivity of the unsteady solution with respect to grid re"ne-
ment. A pitching motion of the airfoils about their mid-chord point was considered. The
interblade phase angle p is 903, the reduced frequency k is 0)85, and the Reynolds number
based on chord Re is 0)5]106. The reduced frequency k is de"ned as k"uc/v

=
, where c is

the chord and v
=

is the total velocity upstream in the far "eld. Figure 5 shows a very good
agreement between the unsteady coe$cient of pressure obtained using a "ne and a coarse
grid. Also shown in Figure 5 is the unsteady coe$cient of pressure obtained using an
inviscid potential solver. Note that the results computed using the inviscid code are quite
di!erent from those obtained in the viscous computations. As expected, the di!erences are
most signi"cant in the region where the boundary layer is thick and separated.

The sensitivity of the unsteady solution with respect to grid re"nement is observed for
a broad range of reduced frequencies and interblade phase angles. Shown in Figures 6 and
7 are the computed unsteady lifts for a range of reduced frequencies and a full spectrum of
interblade phase angles. The real part of the coe$cient of lift C

L
is presented for various

interblade phase angles p and reduced frequencies k. In Figure 6, the reduced frequency k is
0)85; in Figure 7, the interblade phase angle p is 903.

Next, we compare our method to experimental results for a cascade of blades as described
by Bu!um et al. (1998). The solidity of the cascade G/c is 0)657, and the stagger angle c is 603.
The upstream far-"eld Mach number M is 0)2, the in#ow angle H is 703, and the Reynolds
number based on chord Re is 0)38]106. The airfoil pitches unsteadily about its mid-chord
with amplitude 1)23.

In Figure 8, the viscous}inviscid results are compared with the steady results obtained by
Bu!um et al. The coe$cient of pressure obtained using the inviscid}viscous code is shown



Figure 5. The real part of the unsteady coe$cient of pressure C
P

obtained when the interblade phase
angle p is 903, the reduced frequency k is 0)85, and the upstream far "eld Mach number M is 0)5:*,

"ne grid; C , coarse grid; - - -, inviscid.
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to agree well with the experimental data when the transition from laminar to turbulent #ow
is established based on the experimental observations. The experimental observation of the
transition point corresponds approximately to a value n

#3*5*#!-
of 30. The inviscid}viscous

code is shown to give, for this case, results as good as those from a Navier}Stokes solver
(Clark 1998). However, the inviscid}viscous code gives di!erent results when the transition
is computed based on the empirical value n

#3*5*#!-
of 10, a value determined from experi-

mental observations of #ows over isolated airfoils. The di!erences are mostly observed on
the suction side where a large separation is present. The di!erences between the pressure
results are due to the di!erences in determining the location of the laminar}turbulent
transition, which strongly in#uences the region of separation. This calculation con"rms that
a good agreement is obtained when one uses additional experimental information in
establishing the value of the transition parameter n

#3*5*#!-
.

In Figures 9 and 10, the real and imaginary parts of the unsteady coe$cient of pressure
are presented. A fair agreement between the inviscid}viscous calculation and the experi-
mental measurements and a Navier}Stokes solver is obtained. Similar to the steady case,
the results obtained when n

#3*5*#!-
is 30 are shown to agree better with the experiment than

when n
#3*5*#!-

is 10.

4. PROPER ORTHOGONAL DECOMPOSITION

First introduced in the time domain (Romanowski 1996), the POD has recently been used
also in the frequency domain (Hall et al. 1999; Kim 1998). In this paper, we used the
&&snapshot'' POD method. In this approach, the response of the linearized system with
¸ degrees of freedom is obtained and stored in a solution vector U

i
, for a set of N excitation

frequencies u
i
. Each solution vector U

i
has ¸ complex entries and, therefore, contains both

the phase and the magnitude characteristics of the response. A matrix R of size ¸]N is
formed such that its ith column is the solution vector U

i
for each i)N. A correlation



Figure 6. The real part of the coe$cient of lift C
L

obtained when the reduced frequency k is 0)85 and
the upstream far-"eld Mach number M is 0)5: *, "ne grid; C , coarse grid.

Figure 7. The real part of the coe$cient of lift C
L

obtained when the interblade phase angle p is 903
and the upstream far-"eld Mach number M is 0)5: *, "ne grid; C , coarse grid.
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matrix is then formed as

C"R*R, (19)

where the superscript asterisk indicates the Hermitian operator. The POD eigenvalues are
then obtained by solving an eigenvalue problem of dimension N,

Cv
i
"j

i
v
i
, (20)



Figure 8. The steady coe$cient of pressure C
P
obtained experimentally and computed when n

#3*5*#!-
is

(a) 10 and (b) 30: *, Navier}Stokes; f, experiment (suction); C , experiment (pressure); j*j,
experiment (suction); K*K, experiment (pressure); r, experiment (suction); e, experiment (pressure);

C*C , inviscid}viscous.

Figure 9. The real and imaginary parts of the unsteady coe$cient of pressure C
P

obtained experi-
mentally and computed for n

#3*5*#!-
"30:*, Navier}Stokes; f*f , experiment; C*C , inviscid}viscous.
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where i varies between 1 and N, j is the reduced-order eigenvalue, and the v
i
are eigenmodes

of dimension N. Among the POD eigenvalues obtained, the most signi"cant eigenmodes
contain most of the energy of the dynamics and correspond to the largest eigenvalues. One
organizes the reduced-order modes v

i
and eigenvalues in descending order such that the "rst

ones are the most signi"cant.
The most signi"cant n modes are then organized in a matrix V of size N]n such that the

column i of V is vector v
i
, with i"1,2, n. The dynamical system is then projected onto the

space spanned by these vectors and a reduced-order model is obtained. Formally, one may
express the linearized equations of motion as

u2A
2
U#uA

1
U#A

0
U"b, (21)

where b is the forcing vector. The component of the solution U in the subspace S, is denoted
U

S
and may be related to U by

U"PU
S
. (22)



Figure 10. The real and imaginary parts of the unsteady coe$cient of pressure C
P

obtained experi-
mentally and computed for n

#3*5*#!-
"10:*, Navier}Stokes; f*f , experiment; C*C , inviscid}viscous.
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Multiplying equation (21) to the left by the Hermitian of the projection matrix P"RV,
and considering only the solutions contained in the space S spanned by the columns of P,
one obtains a reduced-order system of size n as

u2P*A
2
PU

S
#uP*A

1
PU

S
#P*A

0
PU

S
"P*b, (23)

Equation (23) represents the reduced-order model, and it is solved for the n unknowns U
S
.

These unknowns are then expanded back into the original physical space using equation
(22). The most important feature of the POD technique is the fact that the eigenvalues of the
reduced-order model in equation (23), are good approximations of the eigenvalues of the full
system.

In the next section, a reduced-order model of a cascade of airfoils forming the Tenth
Standard Con"guration is investigated. The model is shown to provide accurate results
over a wide range of reduced frequencies although only 25 modes are used. The original
#uid model is therefore shown to be reducible from approximately 10 000 degrees of
freedom to approximately 25 degrees of freedom.

5. REDUCED-ORDER MODELING

To show the applicability of the reduced-order technique, a typical cascade of NACA-5506
airfoils is analyzed. The solidity of the cascade G/c is 1)0, the stagger angle c is 453, the
upstream far-"eld Mach number M is 0)5, and the in#ow angle H is 553. For the unsteady
calculations, a pitching motion of the airfoils about the mid-chord point is assumed.

Three reduced-order models have been constructed. One model was obtained using
a POD technique applied to a set of 75 snapshots obtained varying the interblade phase
angle p between !180 and 1803 while the reduced frequency k"uc/v

=
, was maintained

constant of value 0)85. Another model was constructed using a POD technique applied to
a set of 75 snapshots obtained varying the reduced frequency k between 0 and 1)75 while the
interblade phase angle p was maintained constant of value 1803. Finally, a third model was
constructed using 10]10 snapshots obtained varying p between !1803 and 1803 and
k between 0 and 1)75.

In Figure 11, the real part of the unsteady coe$cient of pressure C
P

obtained for an
interblade phase angle p of 903 and reduced frequency k of 0)85 is presented. A very good
agreement is obtained between the full solution and the solutions obtained using the three
reduced-order models. One reduced-order model was constructed using 25 POD modes



Figure 11. The real part of the coe$cient of pressure C
P

obtained using 25 POD modes when the
interblade phase angle p is 903, the reduced frequency k is 0)85, and the upstream far-"eld Mach
number M is 0)5:*, full model; C , 25-mode model (p); K, 25-mode model (k); - - -, 25-mode model

(k and p).

Figure 12. The real part of the coe$cient of lift C
L

obtained using 25 POD modes when the reduced
frequency k is 0)85, and the upstream far-"eld Mach number M is 0)5: *, full model; C , 25-mode

model (p); K, 25-mode model (k and p).
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based on snapshots obtained varying p. Another model was built using 25 POD modes
based on snapshots obtained varying k. Finally, the third model used 25 POD modes based
on snapshots obtained varying both p and k. The good agreement obtained shows that the
dynamics of the #ow is accurately captured by the "rst few POD modes.



Figure 13. The real part of the coe$cient of lift C
L
obtained using 25 POD modes when the interblade

phase angle p is 903, and the upstream far-"eld Mach number M"0)5: *, full model; C, 25-mode
model (k); K, 25-mode model (k and p).
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In Figure 12, the real part of the coe$cient of lift C
L
for a reduced frequency k of 0)85 and

various interblade phase angles p is presented. A good agreement is obtained between the
full solution and two reduced-order models. One ROM was constructed using with 25
degrees of freedom obtained from POD snapshots computed varying p. The other model
was built using 25 POD modes obtained varying both p and k. As expected, the reduced-
order model obtained for "xed k gives more accurate results. Also, the most signi"cant
di!erences are obtained close to the resonant frequencies because in these regions the errors
made in approximating the modes of vibration of the #uid are most strongly ampli"ed.

In Figure 13, the real part of the coe$cient of lift C
L
for an interblade phase angle p of 903

and various reduced frequencies k is presented. The results obtained using the full model are
compared to the results obtained two reduced-order models. Both reduced-order models
use 25 POD modes obtained with 75 snapshots. In one model, the modes have been
obtained using snapshots computed varying k and maintaining p constant. In the other
model, p was varied and k was maintained constant. The two reduced-order models
considered give accurate results at low frequencies. The model obtained at constant p gives
good results at higher frequencies also. As expected, the model based on snapshots obtained
varying both p and k gives moderately good results at high frequencies. However, when
required, the accuracy of the results may be improved by using a larger number of snapshots
in frequency, and a larger interval of frequencies.

6. CONCLUSIONS

A fully nonlinear steady model of the #ow in a turbomachinery cascade has been developed.
The unsteady #ow has then been linearized about the nonlinear steady response and
a frequency domain model has been constructed.

The #ow has been solved using an inviscid}viscous model, where the inviscid part is
described by the full potential equation, while the viscous part is described by an integral
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boundary-layer model. This model has been validated and shown to provide similar results
when compared with previous computational and experimental data presented in the
literature.

A reduced-order model in the frequency domain has been constructed using the proper
orthogonal decomposition. A cascade of airfoils forming a slightly modi"ed Tenth Standard
Con"guration has been investigated. The reduced-order model with only 25 degrees of
freedom has been shown to accurately predict the unsteady response over a wide range
of reduced frequencies when compared with a full model with approximately 10 000 degrees
of freedom.
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